İŞTE SEN VE BEN - İCATLAR
  Ana Sayfa
  Ziyaretşi defteri
  MÜZİKLER
  FEN VE TEKNOLOJİ HABERİ
  EĞLENCE
  FIKRALAR
  MANİLER
  İCATLAR
  TEST
  BİLGİLENDİRME
  ŞİİR
  KOMİK
  İZCİLİK
  FEN VE TEKNOLOJİ TESTİ
  BİLİM
  OYUN İNDİR
  OYUNLAR





Mum, parafin, donyağı ya da bunlar benzeri, yavaş yanan bir maddenin, genellikle kınnaptan yapılan bir fitilin üzerine döküldükten sonra katılaştırılması yöntemiyle hazırlanan, genellikle silindir biçimindeki ışık kaynağıdır.
Tarihi
Mısır ve Girit’te bulunmuş en az 5000 yıllık şamdanlardan anlaşılabileceği üzere, mum, Antik Çağ’ın ilk buluşları arasındadır. Ortaçağ’da ise Avrupa’da kullanılan mumlar, donyağından yapılmaktaydı. 1292 yılına ait bir vergi listesine göre ise, Paris’te 71 tane mum yapımcısı yaşamaktaydı.

1800′lü yıllarda Fransız kimyacı Michel-Eugène Chevreul, yağdaki gliserinden yağ asidini ayırarak daha kaliteli mumları yapımında kullanılan stearik asidi üretmiştir. Daha sonraları ise mum malzemesi yapmakta yeni işlemler öğrenilmiştir. Stearik asitten ayrı, iki önemli malzeme daha bulunmuştur: İspermeçet balinasının kafa boşluğundan elde edilen ispermeçet, ve petrolün bir yan ürünü olan parafin. Bu buluşlardan sonra, parafin ve stearik asitle hazırlanan karışım, mumun temel malzemesi hâline gelmiştir.
Yanarken, alevden çıkan ısı, fitilin dibindeki katı mumu sıvılaştırır. Bu eriyik, kılcal hareket sonucu fitilden yukarı doğru çıkar, sonra da ısı nedeniyle buharlaşır. Mum buharının yanmasıyla da alev oluşur. Bu böyle bir döngü hâlinde, mum bitene dek devam eder.
19. yüzyılda geliştirilmiş olan mum kalıp makinesi, dönüşümlü olarak ısıtılıp soğutulan metal bir tank içerisindeki dizi kalıplardan oluşmaktadır. Kalıplar soğuduktan sonra, mumlar pistonlarla püskürtülür. Makinenin altındaki fitil makaraları mum kalıplarının içinden geçecek biçimde pistonlara bağlanır. Soğuyan mumlar kalıplardan çıkartıldıktan sonra da fitilleri kesilir. Mumlar, bu hâldeyken paketlenip piyasaya sunulurlar.

Kullanımı
Elektriğin icadından önce, mumlar, gaz lambalarıyla birlikte aydınlanmanın en önemli araçlarından olmuşlardır.
Günümüzde ise mumlar daha çok süs eşyası konumundadırlar. Doğum günü pastalarının üzerinde, şık görünmesi istenen yemek masalarında, yumuşak, ılık bir ambians yaratılmak istenen her yerde mumlara rastlanmaktadır.
Dinde
Mumlar geçmişten bugüne, pek çok dinde ve dinsel ayinlerde kullanılmaktadır.
Budizm
Budistler meditasyon sırasında rahatlamak ve gevşemek için mum kullanırlar.
Hinduizm
Hinduizm’de mum, ruhsal aydınlanmanın ve başarının sembolü olarak pek çok ritüelde kullanılmaktadır.
Kwanzaa
9 kollu mumlukta, 2 mum, Kwanzaa’nın 2. gününü gösterir.
9 kollu mumlukta, 2 mum, Kwanzaa’nın 2. gününü gösterir.
Afroamerikan kökenlilerin tatilleri 26 Aralık-1 Ocak tarihleri arasında kutlanan Kwanzaa’da 3 kırmızı, 1 siyah ve 3 yeşil mum yakmak zorunludur.
Hümanizm
Hümanizmde mum, mantığın ve akılcılığın sembolüdür.
Musevilik
Musevilik’te genellikle, cuma akşamları, Şabat başlangıçlarında yapılan Havdalah ritüeli esnasında mum yakılır.
Vika
Vikalıkta mum, dört temel element ateş, toprak, su, havanın geçtiği büyü törenlerinde ve diğer genel maji ayinlerinde kullanılır.
Zaman
İlk olarak Çin’de yapılan ve sonra tüm dünyaya yayılan mum saatleri, zamanın belirlenmesinde kullanılır. Aynı zamanda çok zor yanan mum takvimleri, günün belli olmasında da kullanılırlar. Bu takvimler, bir yıl boyunca yanabilen mumlardır.
 
 






 
 

İngiltere’deki kömür madenlerinde durum gittikçe daha tehlikeli bir hal alıyordu. Sürekli artan kömür talebi, kuyuların daha çok derinleştirilmesini gerektiriyor, dolan suları boşaltmak gittikçe güçleşiyordu. Britanya ekonomisinin en önemli sorunu durumuna gelen suları boşaltma işi için bütün mühendisler seferber olmuşlardı.
 
XVII. yüzyılın sonlarında bu mühendislerden biri, Thomas Savery (1650-1715), bilim yayınlarına göz gezdirirken Hook’un, Papin’in makinesinden söz eden bir yazısına rastladı. Savery, Hook’un eleştirmelerine rağmen, icadın işe yarar olabileceğini tahmin etti. Bunun için de, ne gibi yenilikler getirilmesi gerektiğini tasarlayarak hemen işe koyuldu.
 
Savery, pratik bir buhar makinesinin ihtira beratını, (patent) 1698′de aldıktan sonra makineyi önce kralın, ertesi yıl da Royal Society önünde denedi. Papin’in makinesine, musluğa bağlı boruyla, istenildiği anda eksilen suyun yenilenebileceği büyük bir kazan eklemişti. Burada kaynatılan su, ani bir soğuk su akımıyla sıvılaştırılıyor, böylece borunun içinde boşluk meydana geliyor, sonra dışarı atılacak su bu boşluğa doğru akıyordu. Bundan sonra kazan yeniden ısıtılıyor ve işlem tekrarlanıyordu.
Papin’in makinesindeki gibi piston yoktu ve mekanizması da daha sadeydi. Ağır işlemekle birlikte (dakikada dört darbe), hiç değilse düzgün çalışıyordu. Ancak, iki büyük sakıncası vardı. Önce çok masraflıydı (75 lire suyu bir metre kaldırmak için 16 kilo kömür yakmak gerekiyordu), sonra, tulumba ne kadar yüksekse, buhar basıncının da o oranda yüksek olması gerekiyordu. Oysa basınç 8-10 atmosferi bulduğunda ısı öylesine yükseliyordu ki, lehimler eriyor, yarattığı gücün etkisiyle kazan patlıyordu.
Savery, patlamayı güven altına almak ve kazandaki basıncı kontrol edebilmek için Denis Papin’in 17 yıl önce Londra’dayken icat ettiği aygıtı kullanmayı düşünememişti. Fransız bilgini 1681′de, en sert etleri bile kısa zamanda pişirmeye yarayacak bir tencere icat etmişti. Bu, aslında, bugün kullandığımız “düdüklü tencere”nin ta kendisiydi. İçindeki basıncı bilmek için bir supap yerleştirmiş, basıncı bir ağırlıkla dengelemişti. Bu gerçek bir “güvenlik supabı”ydı ve kapsamı tencerenin yararını çok aşıyordu.
Burada Papin ve Savery’nin amaçlarının ayrı olduğuna işaret etmemiz yerinde olur. Savery bir teknisyendi ve maden ocaklarındaki suların boşaltılması gibi somut bir soruna eğilmişti. Bunu çözümleyince, daha öteye gitmek aklından geçmiyordu. Papin, onun tersine, bir bilgindi. Huygens’in kendisine aktardığı pratik sorun, (Seine’in sularını Versay sarayının parklarına kadar yükseltmek) onun için bir hareket noktası olmuş, dehası gittikçe genişleyen bir alanda icatlara yönelmişti. Kısacası, Savery ile Papin arasında, yarar gözeten bir uygulamacıyla bir anda dünyayı sarsabilecek bir bilim adamının bütün özellikleri vardı.
1707′de altmışına varmış, hayal kırıklığına uğramış, bezgin ve kırgın bir insan olan Denis Papin, eski sorunu, Savery’nin eserinin ışığında çözümlemeye koyuldu. O sırada Savery’nin makinesi madenlerdeki suları boşaltmakta kullanılıyordu; ama suyu dışarı atacağına hidrolik bir çarkın kanatlarının üstüne akıtıyordu. Papin’in meydana getirdiği gülünç makine karmaşık ruhunun bir aynasıydı sanki Bir tek güç kullanacağına (sözgelişi bir buhar), buhar, hava basıncı ve ağırlıktan yararlanıyordu.
 
Bilgin, yine de bunu bir gemiye monte edip küreklerini çektirmeyi başardı. Gemi, Fulda üzerinde Cassel’de gerçekten işledi, ama bir defaya mahsus, göstermelikti bu. Papin, kararsız kişiliğine kapılıp Londra’ya yerleşmek üzere Almanya’dan ayrıldı. Weser’deki takacılar, kendi kendine giden bu gemiyi öfkelerinden paramparça ettiler. Parasız kalan zavallı Fransız da yoksulluk ve unutmuşluk içinde yaşlanmaya boyun eğmek zorunda kaldı. Ne zaman öldüğü bile tam olarak bilinmeyecek kadar unutuldu…
Savery’nin makinesi suyu 17.50 metre yüksekliğe çıkardığı ve son derece ekonomik işlediği halde, maden işletmecileri tarafından beğenilmemişti. Çünkü madenler çok derin kazıldığından her 17.50 metreye bir makine yerleştirmek gerekiyordu. Ayrıca bunların işletilmesi göze alınamayacak kadar büyük masraflara yol açacaktı.
Dartmouth’da (Devonshire) işleyen bu tür bir makine Thomas Newcomen (1663-1729) adlı bir çilingirin dikkatini çekti. Tasarılarını kendisine yakınlık gösteren büyük fizikçi Robert Hook’a açarak ondan kendisine öğüt vermesini diledi.
Günümüzde, basit bir çilingirin ünlü fizikçilerden birine baş vurması ve onun tarafından da ciddiye alınması pek olağan değildir. O zamanlarda böyle şeylere hiç kimse şaşmazdı. Bir icadın, bilginden çok, usta ve zeki bir işçinin eseri olabileceği akla yakın görülüyordu. Bilim ve tekniğin işbirliği yeni yeni kurulmaktaydı ve Kolomb’un yumurtası hikâyesi her gün tekrarlanıp duruyordu. Öte yandan, bilim adamları da kendilerine fazlaca güvenen bilgiçler olmasa gerekti; hatta tarihçilerin, kişiliğini alabildiğine kötüledikleri Hook bile…
Böylece Newcomen, Newton’un eşiti büyük bilgine danışmaktan çekinmedi. Sonra da arkadaşı camcı John Cawley ile birlikte, Savery’nin ateşli tulumbasının neden bunca güçsüz ve masraflı işlediği konusunda kafa patlatmaya başladılar. İlk kusuru, buhar basıncının yetersiz olmasındandı. Basıncı artırmak için ısıyı yükseltmek, kazanın patlamasını önlemek için de daha kalın imal etmek gerekiyordu. Ancak, bu kalın kazan daha geç soğuyacak, yani tulumba daha ağır işleyecek dolayısıyla verim düşecekti. Makine de bu yüzden masraflıydı zaten. Isıtmak için bir yığın kömür yaktıktan sonra soğutmak için çırpınmak, olur iş değildi doğrusu.
Newcomen, Papin’in ve Savery’nin makinelerini inceledikten sonra, ikisi ortasını buldu. İkincinin kazanını, .birincinin de pistonlu silindirini aldı. Hem kazan, hem de tulumba gövdesi olarak tek bir kap kullanacağına, iki ayrı kaptan yararlanmayı düşündü. Böylece, soğutmaya ihtiyaç kalmayacağından kazanı gereğince kalın imal edilebilecek; doğrudan doğruya ısıtılmayacağına göre silindirin de soğutulması kolay olacaktı.
Newcomen’in projesi 1705′te gün ışığına çıktı. Makine şöyle işliyordu: Kazanda oluşan buhar, bir silindire giderek pistonu kaldırıyor; piston dibine kadar iyice itildikten sonra soğuk su veriliyor; buhar sıvılaşınca silindirde hava boşluğu elde ediliyor; o zaman hava basıncı bütün gücüyle etki yaparak pistonu aşağıya itiyordu. Sonra silindire yeniden buhar gönderiliyor işlem böylece sürüp gidiyordu. Piston sürekli olarak inip kalkacağından, bunu bir çubukla, işletilecek tulumbaya bağlamak yeterliydi.
Savery gibi Newcomen de makinesini yalnız tulumbalarda kullanmayı düşünmekte, bunun suyu yükseğe çıkarmaktan başka bir şeye elverişli olabileceğini aklının ucundan geçirmemekteydi. Her ikisinin de tek kaygısı, suyu 10.33 metreden yukarıya çıkarmaktı. Newcomen’in makinesi, tam anlamıyla bir buhar makinesi değildi. Çünkü bunda itici güç buhar değil, hava basıncıydı. Ancak bu nokta kullananları ilgilendirmiyordu. Bu makine Savery’ninkinden daha güçlü, daha az masraflıydı ya, onlar için de önemli olan buydu. Önceleri dakikada altı iniş-çıkış yaparken sonra bu on ikiye yükseltildi ve gücü de 100 beygiri buldu.
Makinenin ilk alıcısı Wolferhamptonlu bir kömür madeninin sahibiydi. Makine büyük bir başarıyla görevinin üstesinden gelince, öteki maden şirketleri de art arda satiri almaya başladılar. Geliştirilmeye son derece elverişli oluşu makinenin satışını artırıyordu.
 
Gerçekten, 1713′te ‘prototipi’ son derece ilkel olmakla birlikte hızla gelişti; yüzyılın ortalarına doğru enikonu mükemmel bir araç haline geldi. Bu gelişmelerden ilki musluklarda oldu. Üç musluktan biri silindire buhar yolluyor, ikincisi soğuk su akıtıyor, üçüncüsü de suları boşaltıyordu. Muslukların elle işlemesi bir sakıncaydı elbet, çünkü bir işçinin yalnız bu işle sürekli uğraşması gerekiyordu. Ancak otomatikleştirme işini Newcomen mi, yoksa, Potter adlı bir işçi mi gerçekleştirdi, bilemiyoruz. 1713′te bu musluklar bir sicimle makinenin düzgün hareketini sağlayacak ‘denge düzenleyicisi’ne (balansiye) bağlanarak işletilmeye başlandı. 1718′de Beighton adlı bir teknisyen bu ipi söküp yerine, ince bir çubuk yerleştirdi. Böylece makine kendi kendine işler duruma geldi.
Bundan sonra, kazanın geliştirilmesi işi ele alındı. Alman Jacob Leupold (1674-1727), basıncı artırmayı (1725) ve İngiliz James Brindley de (1716-1772), kazanın beslenmesini düzenli hale sokmayı başardılar/İngiliz John Smeaton (1724-1792), buharın kaybolmasını önlemek için silindirin ve pistonun daha iyi perdahlanmasını sağladı. Kısacası, yaratılmasından bu yana yarım yüzyıl geçmeden Newcomen’in makinesi bütün Avrupa’yı fethetti. Fransa’da ilk olarak 1732′de maden ocaklarındaki suların boşaltılmasında kullanıldı. Hollanda’da denizden kazanılan yerlerde aynı amaca hizmet etti. Bazı ülkelerde de şehirlere su verme ya da toprakları sulama işine yarıyordu, İngiltere’de yüzlercesi işlemekteydi. Bunlar, koca bir bina büyüklüğünde dev makinelerdi. Ağır ağır gidip gelen hantal sarkacın çevresine bir yığın seyirci toplanıyordu.
Newcomen’in makinesi son 1934′te hizmetten çekildi. 1787′de yapılmış olan bu saygıdeğer kalıntı halen Barnsley (Yorkshire) adlı İngiliz köyünde bulunmaktadır. Sarkacı 7, silindiri de 3.30 metre yüksekliğindedir.
1951′de, Büyük Britanya festivalinde işletilmesi kolay olmadı. Piston bazen inadı tutup yükselmiyor, bazen inmeyi unutuyor, bazen de yorgunluktan poflaya tıslaya duruveriyordu. Bunu da 147 yıllık hizmetten sonra hoş görmek gerekir. En iyi işlediği günlerde, makine, her iniş-çıkışında 227 ‘litre suyu 40 metre yükseğe çıkartmaktaydı.
 

ilk yara bandı




Dünyanın ilk yapışkanlı hazır yara bandı Johnson & Johnson’ın piyasaya sürdüğü J&J Band-Aid yapışkanlı bandajıdır; firmada çalışan Earle E. Dickinson’ın 1920′de icat ettiği bu ürün 1921′de piyasaya sürüldü. Johnson & Johnson firması, 1885′te ameliyat pansuman ürünleri üretmek üzere kurulmuştu ve 1920′den çok daha önceden beri yapışkan cerrahi bant, gazlı bez ve benzeri ürünleri üretiyordu. Ama yapışkanlı yara bandı kapsamlı bir araştırma geliştirme çalışmasının değil, karısı Josephine’in sık sık kazaya uğraması nedeniyle, Dickinson’ın pratik zekasının bir ürünü oldu.


Josephine’in yaralarına pansuman yapmak Dickinson’ın çok zamanını alıyordu; bu yüzden şirketin mevcut yapışkanlı bandaj ve gazlı bezlerinden kullanıma hazır bandaj yapmaya karar verdi. Önce yapışkanlı bandaj rulosunun bir miktarını açıp üzerine kısa gazlı bez şeritlerini yerleştirdi, kendi kendine yapışmasın diye üzerini krinolinle kapladıktan sonra ruloyu yeniden sardı. Bundan sonra tek yapması gereken, gerektiğinde ruloyu açıp hazır pansumanı kesmekti.

Başlangıçta Dickinson’ın icadı pek tutulmadı, ama 1924′te Johnson & Johnson, bunları rulo yerine kesik şeritler halinde satmaya başlayınca, Band-Aid yara bantlarının evlerin vazgeçilmezleri arasına girmesi çok sürmedi. 1928′de İngiltere’de (Önce varikoz ülser tedavisinde kullanılan) başka bir yapışkanlı bandaj türü icat edildi.
1856′da Thomas Smith, analitik ve farmakolojik kimyager olarak Hull’da bir firma kurdu. Kırk yıl sonra yeğeni Horatio Nelson Smith’i şirketine ortak yaptı ve 1928′de (bugün şirketin tek sorumlusu olarak kalan) Horatio yeni bir elastik yapışkanlı yara bandı icat etti. Yeni ürün tutmadı, ta ki bir cerrah bu yeni sargının, varikoz ülser hastalarına yararlı olacağını bir makalede duyurana dek. Smith akıllılık edip bu makaleyi tıp dünyasından elden ele dolaştırdı. Çok geçmeden bu sargı, Smith & Nephew şirketinin genel kullanım için en çok satılan ürünlerinden biri haline geldi; elastik yara bandı, patentteki tanımı benimseyerek Elastoplast ticari markasını aldı. 




Atom Çekirdeğinin Keşfi

[/SIZE][/COLOR]
Atom çekirdeğinin varlığı üzerine ilk çalışma radyoaktifliğin keşfinden sonra elde edilen α ışınlarının bir altın yaprak üzerine düşürülmeleri ile  Rutherford tarafından yapılmıştır. Bu çalışma Greiger-Marsten ve Chadwick tarafından birbirinden bağımsız yapılmış ve teori doğrulanmıştır. Rutherford ve çalışma arkadaşları α ışınlarını ince bir altın yapraktan geçimi şekildeki şeması görülen düzeneği kullanarak incelemişlerdir. Bir kurşun blok üzerine açılan ince bin delik üzerine yerleştirilen radyum parçasından elde edilen α ışını demeti altın levha üzerine düşürülmüştür. Altın yaprağı geçen ışınımlar O noktası etrafında birlikte dönebilen bir flüoresans levha ve mikroskop yardımıyla gözlenmiştir. 6.10-5 cm kalınlığındaki altın levha havayı geçirmemektedir. α ışınlarının hava molekülleri içindeki etkisini önlemek içinde sistem vakumlanmıştır.

Altın atomlarının α parçacıklarına göre çok daha büyük olması düşüncesiyle bu ışınlar için altın yaprağın bir set oluşturacağı her ne kadar akla gelebilirse de deneyde bunun tersine olarak α ışınlarının büyük bir kısmının levhayı geçerek yoluna devam ettikleri, küçük bir kısmının da saçılmaya uğradığı deneyle gözlenmiştir. Altından başka diğer maddelerde de aynı deneyler yapılmış ve ışınımların saçılmaya uğrayan kısmının maddenin kalınlığı ile orantılı olduğu bulunmuştur. Bu deneyde Rutherford’un çıkardığı sonuç şudur: Atomların kütleleri son derece küçük boyutlu çekirdeklerde toplanmıştır. Elektriksel boşama olaylarında elektronlar atomdan kopartılarak pozitif iyonlar oluştuğuna göre; elektronlar atomun dış kısmını meydana getirirler. Elektronların atomun dış kısmına tutunabilmeleri için de çekirdeğin pozitif yüklü olması gerekir. Dolayısıyla çekirdeğin bu pozitif yükü onu kuşatan elektronların toplam negatif yüküne eşittir. Elektronlara etki eden Coulomb  kuvveti ile evrensel çekim kuvvetinin matematiksel ifadeleri birbirine benzediğine göre çekirdek yada etrafındaki güneş sistemine benzemelidir. Bu düşünceye göre elektronlar çekirdeğin etrafında dönmektedirler. α ışınlarının büyük bir kesiri yaklaşık 2000 atom kalınlığındaki bir altın levhayı geçtiğine göre çekirdeğin çapı atomun çapı yanında çok küçüktür. Güneş ve yıldızlar arasında olduğu gibi çekirdek ve elektronlar arasında büyük bir boşluk vardır. Bu sebeple bir α parçacığının dorudan doğruya çekirdeğe çarpma ihtimali çok azdır. Buna karşın elektronlara çarpma ihtimali daha büyüktür.Ancak elektronların kütlesi α parçacıklarının kütlesinden çk küçük olduğundan böyle bir çarpışmada α parçacıklarının doğrultusu ve hızı değişmez. Fakat elektronları yörüngelerinden çıkartabilirler. Çekirdek ve α ışınlarının her ikisi de (+) oldukları için α ışınları çekirdek tarafından itilir. Bir α taneciği çekirdeğe ne kadar çok yaklaşırsa doğrultusu o kadar değişir. İşte saçılmanın sebebi budur.
 

 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol